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ABSTRACT We have developed a crystallographic–based viscoplastic model for non-
isothermal high temperature deformation and coupled it with damage kinetics.  Several 
damage mechanisms, namely the multiplication of mobile dislocations, void growth and 
including scale effects, caused by dislocation extrusions/intrusions, have been considered.  
We applied two body interaction concepts from chemical kinetics to include in our 
constitutive relations the generation and interaction of pinned and mobile dislocations.  
The relative importance of each of the damage modes at different temperatures and stress 
levels has been deduced by comparing strain-stress and crystallographic texture 
predictions calibration against test data and has shown that the dislocation density growth 
may be important in characterizing primary creep. 
 
INTRODUCTION: An understanding of the micromechanics of high temperature creep 
and damage accumulation in single crystal nickel base superalloys is important for the 
design of turbine blades and vanes in advanced commercial and military gas turbines.  
Our models must not only predict the creep response of materials in gas turbines they 
must also be able to model virgin material since most experimental data has been 
obtained from “as received” materials and “as received” materials have considerably 
smaller dislocation densities than pre-strained/pre-exposed materials. This can drastically 
change the primary creep response. The Orowan equation, where strain rate is 
proportional to the dislocation density, is commonly used to describe the mechanical 
response of materials. But clearly if the dislocation density increases then the strain will 
also increase and the equations must include an additional term proportional to rate of 
growth of dislocation density.  We believe that including dislocation density growth rate 
in our model may predict the observed experimental differences between “as received” 
materials and pre-strained materials.   
 
PROCEDURES, RESULTS, AND DISCUSSION: We have used a standard 
viscoplastic power law creep with a back stress to represent the response of the material.  
The constitutive law for the inelastic strain rate, p

iγ&  along slip plane i  is proportional to 
the mobile dislocation density, mρ , and is written as (Staroslesky et al, 2006) 

( ) ( ) ( )( )* *
0 0/ / sgn /

np
i m i i i i i is sγ γ ρ ρ τ ω τ ω= − −& & , where 0γ&  is a time constant, iτ  is the slip 

plane resolved shear stress, *
is is the isotropic yield stress, iω  is the slip plane back stress, 

and )   ( & is the rate of change with respect to time.  Both *
is  and iω  have evolution 
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equations of their own. We obtain relations for mobile and pinned dislocations along each 
slip system as: 

2 2 2
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where Μ and Π  represents specific time constants, different for the octahedral and cube 

slip systems, ss
mρ , is the saturated mobile dislocation density, ss

pρ , is the saturated pinned 

dislocation density, and 2ε  is a positive constant, v is the pore volume fraction and has an 

evolution equation associated with it.  Please see Staroselsky, et al (2006) for a more 

complete discussion of the model.  The Orowan (1940) equation is commonly used to 

describe the mechanical response of materials and is referenced widely [e.g. see 

Thompson, 2006]. 

The Orowan equation is generally written for edge dislocations with a dislocation 
density, ρ , as bvργ =& , where γ  is the shear strain, v  is the dislocation velocity, b is 
the Burgers’ vector, and ( ) ( ) t∂∂= / & .  However if the dislocation density increases then 
the strain will also increase and the equation should include a ρ& .  For example, we could 
write bLLb ρργ &&& += .   The quantity L is some characteristic dimension which will make 
the strain rate the total derivative of a function.  An equation containing ρ&  is not a new 
idea, and has been proposed independently by others [e.g., see Gupta, et al, 1974].  The 
characteristic distance L is the key parameter that must be developed.  Our proposal is to 
assign to L the distance between pinned dislocations similar to Thompson (2006) where 
the author has proposed using the average dislocation displacement.   
 
For example consider the singular components of the strain for edge and screw 
dislocations describe the state of strain in a material.  For an edge dislocation in the x-y 
plane (i.e., the dislocation line is parallel to the z-axis), and the discontinuous slip along 
the x-axis, the singular part of the displacements in cylindrical coordinates (Nabarro, 
1987) are, ( ){ }/ 2 , ln / ,0u b r bπ θ=

r , where the vector components are along the 
, ,r zθ are the directions respectively. For a screw dislocation in the x-y plane the singular 

part of the cylindrical displacements (Nabarro, 1987) are { }/ 2 0,0,u b π θ=
r .  For the edge 

dislocation the small strain components can be evaluated, and then the maximum shear 
strain can be readily shown to be max / 2b rε π=  in cylindrical coordinates.  Similarly for 
a screw dislocation the maximum shear strain is max / 4b rε π= .  Recall that the maximum 
engineering shear strain, maxmax 2εγ = , 
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For dislocations that are distributed throughout an area with density, ρ , the strain tensor 

becomes for both edge and screw dislocations can be written as ( )∫ −=
S

ijij dSRrbf
rrρε , 

where S  is the area over which the dislocations are distributed, and we have assumed 
that the rate of change of the integrand over time, t, is slow enough for a steady state in 
the strains to exist.  The dislocation density can include both edge, eρ , and screw 

dislocation densities, sρ , where se ρρρ
2
1

+= .  The strain rate can be found by 

differentiating with respect to time, then { }∫ ∇•−=
S

ijijij dSfRbbf
r&r&& ρρε , where 

( ) ( ) / t= ∂ ∂& ,  ( )Rrff
rr

−= , and rr  is the vector ( )0,, yx  while R
r

 is the vector 

( )0,,YX .  The integration is performed over the coordinates ( )0,, yx .  If ρ , ρ& , and R&
r

 

are constant throughout the area S  then ij ij ij
S C

b f dS bR f ndCε ρ ρ= − •∫ ∫
r r&& &  where the 

contour C  surrounds the area S , and use has been made of the divergence theorem. 
 
We can find an approximate value for the second integral by considering the case of a 
circular contour of radius a  surrounding the area S , and all of the dislocations moving 
with velocity v .  Then the maximum engineering strain rate for edge dislocations with 

0=ρ&  is given by bveργ =max& , which exactly matches the Orowan equation.   We now 
need an estimate for the term proportional toρ& .  Consider again the case of a circular 
area of radius a .  An integration yields bvba ee ρργ += && 2max . Our proposal is to make 
the term 2a  in the ρ&  term proportional to the average distance between pinned 
dislocations.  That is, if the pinned dislocation density is pρ  then the distance is 

proportional to 1/ pρ . 
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